Immagine
 Trilingual World Observatory: italiano, english, română. GLOBAL NEWS & more... di Redazione
   
 
\\ Home Page : Articolo
When atoms combine to form compounds, they must follow certain bonding and valence rules. For this reason, many compounds simply cannot exist.
By Admin (from 22/08/2011 @ 11:00:58, in en - Science and Society, read 1419 times)

But there are some compounds that, although they follow the bonding and valence rules, still are thought to not exist because they have unstable structures. Scientists call these compounds "impossible compounds." Nevertheless, some of these impossible compounds have actually been fabricated (for example, single sheets of graphene were once considered impossible compounds). In a new study, scientists have synthesized another one of these impossible compounds -- periodic mesoporous hydridosilica -- which can transform into a photoluminescent material at high temperatures.

Chemists fabricate 'impossible' material

The researchers, led by Professor Geoffrey Ozin of the Chemistry Department at the University of Toronto, along with coauthors from institutions in Canada, China, Turkey, and Germany, have published their study in a recent issue of theJournal of the American Chemical Society.

Like graphene, periodic mesoporous hydridosilica (meso-HSiO1.5) consists of a honeycomb-like lattice structure. Theoretically, the structure should be so thermodynamically unstable that the mesopores (the holes in the honeycomb) should immediately collapse into a denser form, HSiO1.5, upon the removal of the template on which the material was synthesized.

In their study, the researchers synthesized the mesoporous material on an aqueous acid-catalyzed template. When they removed the template, they discovered that the impossible material remains stable up to 300 °C. The researchers attribute the stability to hydrogen bonding effects and steric effects, the latter of which are related to the distance between atoms. Together, these effects contribute to the material’s mechanical stability by making the mesopores resistant to collapse upon removal of the template.

“The prevailing view for more than 50 years in the massive field of micro-, meso-, or macroporous materials is that a four-coordinate, three-connected open framework material (called disrupted frameworks) should be thermodynamically unstable with respect to collapse of the porosity and therefore should not exist,” Ozin told PhysOrg.com. “The discovery that this class of material can indeed exist with impressive stability is not a special effect related to the choice of the template, but rather that intrinsic hydrogen bonding between the silicon hydride O3SiH units and silanol O3SiOH that pervade the pore walls is strong enough to provide the meso-HSiO1.5 open-framework material with sufficient mechanical strength for it to be able to sustain the porosity intact in the as-synthesized template-containing and template-free material. This discovery is the big scientific surprise – so never say never when it comes to chemical synthesis.”

When raising the temperature above 300 °C, the researchers discovered that the mesoporous material undergoes a “metamorphic” transformation. This transformation eventually yields a silicon-silica nanocomposite material embedded with brightly photoluminescent silicon nanocrystals. Because the novel nanocomposite material retains its periodic mesoporous structure, the nanocrystals are evenly distributed throughout the structure. According to the researchers, the origin of the photoluminescence likely arises from quantum confinement effects inside the silicon nanocrystals.

In addition, the researchers found that they could control the photoluminescent properties of the nanocrystals by changing the thermal treatment. They predict that this ability could allow the bright nanocrystals to be used in the development of light-emitting devices, solar energy devices, and biological sensors.

“Now we have a periodic mesoporous hydridosilica in which we can exploit the chemistry of the silicon-hydride bonds that permeate the entire void space of the material,” Ozin said. “Every silicon in the structure has a Si-H bond to play creative synthetic games. This is a big deal in terms of it serving as a novel solid-state reactive host material within which one can perform novel chemistry limited only by one’s imagination, and a myriad new materials will emerge with a cornucopia of opportunities for creative discovery and invention.”

Source: PhysOrg

Articolo Articolo  Storico Storico Stampa Stampa  Share
Cannabis seeds, Autoflowering seeds, Greenhouse, Sweet Seeds, Dutch Passion
comments powered by Disqus
 
Nessun commento trovato. No comments found. Nici un comentariu găsit.

Anti-Spam: dial the numbers CAPTCHA
Text (max 5000 characters)
Nome - Name - Nume
Link ( OPTIONAL - visible on the site - NOT a must )


Disclaimer
Tuo commento sarŕ visibile dopo la moderazione. - Your comment will be visible after the moderation. - Comentariul tău va fi vizibil după moderare.
Ci sono 7439 persone collegate

< dicembre 2019 >
L
M
M
G
V
S
D
      
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
         

Titolo
en - Global Observatory (605)
en - Science and Society (594)
en - Video Alert (346)
it - Osservatorio Globale (503)
it - Scienze e Societa (555)
it - Video Alerta (132)
ro - Observator Global (399)
ro - Stiinta si Societate (467)
ro - TV Network (149)
z - Games Giochi Jocuri (68)

Catalogati per mese - Filed by month - Arhivate pe luni:

Gli interventi piů cliccati

Ultimi commenti - Last comments - Ultimele comentarii:
Hi, it's Nathan!Pretty much everyone is using voice search with their Siri/Google/Alexa to ask for services and products now, and next year, it'll be EVERYONE of your customers. Imagine what you are ...
15/01/2019 @ 17:58:25
By Nathan
Now Colorado is one love, I'm already packing suitcases;)
14/01/2018 @ 16:07:36
By Napasechnik
Nice read, I just passed this onto a friend who was doing some research on that. And he just bought me lunch since I found it for him smile So let me rephrase that Thank you for lunch! Whenever you ha...
21/11/2016 @ 09:41:39
By Anonimo


Titolo





10/12/2019 @ 19:47:13
script eseguito in 881 ms