Immagine
 Trilingual World Observatory: italiano, english, română. GLOBAL NEWS & more... di Redazione
   
 
\\ Home Page : Articolo
Stable two-dimensional networks of organic molecules are important components in various nanotechnology processes. The art of molecular carpet-weaving: 2-D networks from boron acids.
By Admin (from 03/05/2012 @ 11:06:42, in en - Science and Society, read 2770 times)

However, producing these networks, which are only one atom thick, in high quality and with the greatest possible stability currently still poses a great challenge. Scientists from the Excellence Cluster Nanosystems Initiative Munich have now successfully created just such networks made of boron acid molecules. The current issue of the scientific journal ACS Nano reports on their results.

Even the costliest oriental carpets have small mistakes. It is said that pious carpet-weavers deliberately include tiny mistakes in their fine carpets, because only God has the right to be immaculate. Molecular carpets, as the nanotechnology industry would like to have them are as yet in no danger of offending the gods. A team of physicists headed by Dr. Markus Lackinger from the Technische Universität München (TUM) und Professor Thomas Bein from the Ludwig-Maximilians-Universität München (LMU) has now developed a process by which they can build up high-quality polymer networks using boron acid components.

The "carpets" that the physicists are working on in their laboratory in the Deutsches Museum München consist of ordered two-dimensional structures created by self-organized boron acid molecules on a graphite surface. By eliminating water, the molecules bond together in a one-atom thick network held together solely by chemical bonds – a fact that makes this network very stable. The regular honey-comb-like arrangement of the molecules results in a nano-structured surface whose pores can be used, for instance, as stable forms for the production of metal nano-particles.

The molecular carpets also come in nearly perfect models; however, these are not very stable, unfortunately. In these models the bonds between the molecules are very weak – for instance hydrogen bridge bonds or van der Waals forces. The advantage of this variant is that faults in the regular structure are repaired during the self-organization process – bad bonds are dissolved so that proper bonds can form.

However, many applications call for molecular networks that are mechanically, thermally and/or chemically stable. Linking the molecules by means of strong chemical bonds can create such durable molecule carpets. The down side is that the unavoidable weaving mistakes can no longer be corrected due to the great bonding strength.

Markus Lackinger and his colleagues have now found a way to create a molecular carpet with stable covalent bonds without significant weaving mistakes. The method is based on a bonding reaction that creates a molecular carpet out of individual boron acid molecules. It is a condensation reaction in which water molecules are released. If bonding takes place at temperatures of a little over 100°C with only a small amount of water present, mistakes can be corrected during weaving. The result is the sought after magic carpet: molecules in a stable and well-ordered one-layer structure.

Markus Lackinger's laboratory is located in the Deutsches Museum München. There he is doing research at the Chair of Prof. Wolfgang Heckl (TUM School of Education, TU München). Prof. Bein holds a Chair at the Department of Chemistry at the LMU. The research was conducted in collaboration with Prof. Paul Knochel's work group (LMU) and Physical Electronics GmbH, with funding by the Excellence Cluster Nanosystems Initiative Munich (NIM) and the Bavarian Research Foundation (BFS).

More information: Synthesis of well-ordered COF monolayers: Surface growth of nanocrystalline precursors versus direct on-surface polycondensation, Jürgen F. Dienstmaier, Alexander M. Gigler, Andreas J. Goetz, Paul Knochel, Thomas Bein, Andrey Lyapin, Stefan Reichlmaier, Wolfgang M. Heckl, and Markus Lackinger, ACS Nano Vol. 5, 12, 9737-9745

Source: Technische Universitaet Muenchen - via ZeitNews.org

Articolo Articolo  Storico Storico Stampa Stampa  Share
Cannabis seeds, Autoflowering seeds, Greenhouse, Sweet Seeds, Spanish Passion
comments powered by Disqus
 
Nessun commento trovato. No comments found. Nici un comentariu găsit.

Anti-Spam: dial the numbers CAPTCHA
Text (max 5000 characters)
Nome - Name - Nume
Link ( OPTIONAL - visible on the site - NOT a must )


Disclaimer
Tuo commento sarŕ visibile dopo la moderazione. - Your comment will be visible after the moderation. - Comentariul tău va fi vizibil după moderare.
Ci sono 2273 persone collegate

< aprile 2024 >
L
M
M
G
V
S
D
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
         
             

Titolo
en - Global Observatory (605)
en - Science and Society (594)
en - Video Alert (346)
it - Osservatorio Globale (503)
it - Scienze e Societa (555)
it - Video Alerta (132)
ro - Observator Global (399)
ro - Stiinta si Societate (467)
ro - TV Network (143)
z - Games Giochi Jocuri (68)

Catalogati per mese - Filed by month - Arhivate pe luni:

Gli interventi piů cliccati

Ultimi commenti - Last comments - Ultimele comentarii:
Now Colorado is one love, I'm already packing suitcases;)
14/01/2018 @ 16:07:36
By Napasechnik
Nice read, I just passed this onto a friend who was doing some research on that. And he just bought me lunch since I found it for him smile So let me rephrase that Thank you for lunch! Whenever you ha...
21/11/2016 @ 09:41:39
By Anonimo
I am not sure where you are getting your info, but great topic. I needs to spend some time learning much more or understanding more. Thanks for fantastic information I was looking for this info for my...
21/11/2016 @ 09:40:41
By Anonimo


Titolo





18/04/2024 @ 06:22:21
script eseguito in 682 ms