Immagine
 Trilingual World Observatory: italiano, english, română. GLOBAL NEWS & more... di Redazione
   
 
\\ Home Page : Storico : en - Global Observatory (invert the order)
Di seguito gli interventi pubblicati in questa sezione, in ordine cronologico.
 
 
By Admin (from 19/07/2011 @ 14:00:17, in en - Global Observatory, read 1466 times)

Modeling crowd behavior can help engineers design buildings and other public spaces so as to prevent deaths and injuries during emergencies. But it is hard to design virtual crowds that realistically mimic real ones.

European researchers have now shown that a simple model based on one cognitive factor—vision—can predict pedestrian behavior in various types of crowds. It represents significant progress in a field that has been trying to move away from purely physics-based models.

"There's no clear way to describe the cognitive processes of each individual, but with this vision-based approach, it's actually very simple," says Dirk Helbing, of the Swiss Federal Institute of Technology in Zurich, who carried out the work with Mehdi Moussaïd and Guy Theraulaz, of Université Paul Sabatier in Toulouse, France.

The study, which appears in this week's issue of Proceedings of the National Academy of Sciences, was inspired by previous research that used eye-tracking data to determine how people predict the trajectory of an airborne ball in order to catch it. Numerous other studies have suggested that walking, like catching a ball, is primarily governed by vision. So the researchers hypothesized that using visual factors, mainly line of sight and visibility, would allow them to better model crowd behavior.

The researchers gave virtual crowd members the ability to "see" their surroundings and navigate accordingly. They found that their vision-based model predicted pedestrian behavior surprisingly well for both small and large crowds as long as the physical influence of the crowd as a whole was also considered. They suggest that the model could help avert such crowd disasters as the Love Parade incident that killed 19 concertgoers in Germany last summer, by providing designers with new information about how pedestrians will attempt to move quickly through a specific space.

The model primarily indicates how vision affects pedestrians' direction and speed—two forces that often compete when a person is navigating pedestrian traffic. The researchers predicted pedestrian trajectories using the model and then compared their predictions with data from real-life pedestrian scenarios. They found the trajectories matched up almost exactly.

To model crowd disasters, though, they had to consider involuntary as well as voluntary behaviors. What the pedestrian can see remains important, but sometimes the push and pull of the crowd can be even more so. "When the crowd becomes high-density, the simple model isn't enough," says Theraulaz. "You have to take into account the rules of physical contact."

Adding a physical-force component to the vision-based model allowed the study authors to predict pedestrian behavior in different types of overcrowding situations, such as a bottleneck around a blocked exit or a pileup that forms behind a fallen pedestrian.

When the study authors applied their modified model to a real-world bottleneck disaster, they were able to predict the location of the highest-risk areas and map out how pedestrian collisions would spread once the situation became critical. "This is the most dangerous type of case," says Helbing. "You can do video analysis afterward, but even then it's hard to see exactly what's going on, because people are hardly moving."

One of the biggest advantages of the vision-based model is its versatility, says Michael Batty, an urban planning researcher at University College London, who studies crowd modeling. "It's relevant to a whole range of pedestrian situations, and that's what makes it more testable," he says. The study authors suggest that the model could also be used to analyze crowd disasters in low-visibility cases, such as fires, and could help improve the design of crowd-navigating robots.

Source: Technology Review

 

Dr Steve Liddle, an expert in molecular depleted uranium chemistry, has created a new molecule containing two Uranium atoms which, if kept at a very low temperature, will maintain its magnetism. This type of single-molecule magnet (SMM) has the potential to increase data storage capacity by many hundreds, even thousands of times — as a result huge volumes of data could be stored in tiny places.
Dr Liddle, a Royal Society University Research Fellow and Reader in the School of Chemistry, has received numerous accolades for his ground breaking research. His latest discovery has just been published in the journal Nature Chemistry.

Dr Liddle said: “This work is exciting because it suggests a new way of generating SMM behaviour and it shines a light on poorly understood uranium phenomena. It could help point the way to making scientific advances with more technologically amenable metals such as the lanthanides. The challenge now is to see if we can build bigger clusters to improve the blocking temperatures and apply this more generally.
Computer hard discs are made up of magnetic material which record digital signals. The smaller you can make these tiny magnets the more information you can store.

Although it may have somewhat negative PR it seems depleted Uranium — a by-product from uranium enrichment and of no use in nuclear applications because the radioactive component has been removed — could now hold some of the key to their research. Dr Liddle has shown that by linking more than one uranium atom together via a bridging toluene molecule SMM behaviour is exhibited.

He said: “At this stage it is too early to say where this research might lead but single-molecule magnets have been the subject of intense study because of their potential applications to make a step change in data storage capacity and realise high performance computing techniques such as quantum information processing and spintronics.”

Dr Liddle said: “The inherent properties of uranium place it between popularly researched transition and lanthanide metals and this means it has the best of both worlds. It is therefore an attractive candidate for SMM chemistry, but this has never been realised in polymetallic systems which is necessary to make them work at room temperature.”
Dr Liddle is a regular contributor to the School of Chemistry’s award winning Periodic Table of Videos — periodicvideos.com. The website, created by Brady Haran, the University’s film maker in residence, won the 2008 IChemE Petronas Award for excellence in education and training.

Source: PhysOrg

 

At first glance, the plans for the 10MW Tower have all the trappings of pre-crash Dubai: the improbable height, the flashy facade, the swagger of a newbie in a crowded skyline. On closer inspection, however, it’s an eco-machine. The A-shaped, 1,969-foot concept skyscraper is designed to turn out as much as 10 times the energy it needs, enough to power up to 4,000 nearby homes.

Dubai's 10MW Tower - Courtesy Robert Ferry/Studied Impact Design

Three separate systems make it work. First, a five-megawatt wind turbine in the hollow of the “A” generates energy in the powerful and unpredictable desert gusts. Second, mirrors dot the slanted, south-facing facade, beaming light to a molten-salt-filled collector that hangs off the building like an ultra-tall street lamp. Cooked to 932şF, the liquefied salt transfers heat to a convection loop that runs a three-megawatt steam turbine. Finally, a two-megawatt solar updraft tower produces additional energy in clear weather. Sunlight warms air in a two-foot-wide gap that runs the length of the southern face. The airflow from rising heat powers an internal wind turbine.

Reflective: The facade directs light to a power-producing salt-cooker. Courtesy Robert Ferry/Studied Impact Design

If it were built (at an estimated cost of $400 million), 10MW could pay off its energy debt in 20 years. Extra juice feeds the municipal grid, and other sources in the area would adjust for the tower’s output. The building could house offices or residences or both, says designer Robert Ferry, 35, who helms the Dubai architecture firm Studied Impact with his wife, Elizabeth Monoian. The pair became interested in energy-generating skyscrapers on moving to the United Arab Emirates, where there are superstructures in spades but few that are any greener than their brochures. With the 10MW Tower, they hope to someday create a power plant you can live in. It may sound fantastic, but, Ferry says, “it’s only a matter of time before something like this is built.”

Revolutionary: A five-megawatt turbine contributes to the building’s annual output of 20,000 megawatt-hours. Courtesy Robert Ferry/Studied Impact Design

Source: PoPSci

 

In a paper published in Science, Los Alamos researchers Gang Wu, Christina Johnston, and Piotr Zelenay, joined by researcher Karren More of Oak Ridge National Laboratory, describe the use of a platinum-free catalyst in thecathode of a hydrogen fuel cell. Eliminating platinum—a precious metal more expensive than gold—would solve a significant economic challenge that has thwarted widespread use of large-scale hydrogen fuel cell systems.

 

Polymer-electrolyte hydrogen fuel cells convert hydrogen and oxygen into electricity. The cells can be enlarged and combined in series for high-power applications, including automobiles. Under optimal conditions, the hydrogen fuel cell produces water as a "waste" product and does not emit greenhouse gasses. However, because the use of platinum in catalysts is necessary to facilitate the reactions that produce electricity within a fuel cell, widespread use of fuel cells in common applications has been cost prohibitive. An increase in the demand for platinum-based catalysts could drive up the cost of platinum even higher than its current value of nearly $1,800 an ounce.

The Los Alamos researchers developed non-precious-metal catalysts for the part of the fuel cell that reacts with oxygen. The catalysts—which use carbon (partially derived from polyaniline in a high-temperature process), and inexpensive iron and cobalt instead of platinum—yielded high power output, good efficiency, and promising longevity. The researchers found that fuel cells containing the carbon-iron-cobalt catalyst synthesized by Wu not only generated currents comparable to the output of precious-metal-catalyst fuel cells, but held up favorably when cycled on and off—a condition that can damage inferior catalysts relatively quickly.

Moreover, the carbon-iron-cobalt catalyst fuel cells effectively completed the conversion of hydrogen and oxygen into water, rather than producing large amounts of undesirable hydrogen peroxide. Inefficient conversion of the fuels, which generates hydrogen peroxide, can reduce power output by up to 50 percent, and also has the potential to destroy fuel cell membranes. Fortunately, the carbon- iron-cobalt catalysts synthesized at Los Alamos create extremely small amounts of hydrogen peroxide, even when compared with state-of-the-art platinum-based oxygen-reduction catalysts.

Because of the successful performance of the new catalyst, the Los Alamos researchers have filed a patent for it.

"The encouraging point is that we have found a catalyst with a good durability and life cycle relative to platinum-based catalysts," said Zelenay, corresponding author for the paper. "For all intents and purposes, this is a zero-cost catalyst in comparison to platinum, so it directly addresses one of the main barriers to hydrogen fuel cells."

The next step in the team's research will be to better understand the mechanism underlying the carbon-iron-cobalt catalyst. Micrographic images of portions of the catalyst by researcher More have provided some insight into how it functions, but further work must be done to confirm theories by the research team. Such an understanding could lead to improvements in non-precious-metal catalysts, further increasing their efficiency and lifespan.

Source: PhysOrg

 

Jack Kevorkian might be gone, but his spirit lives on -- well, maybe living isn't the best way to put it...

For the first time ever, this Friday night, a website will run a live broadcast of a terminally ill man ending his life in a case of assisted suicide.

Nikolai Ivanisovich, 62, is terminally ill with brain cancer. He will die before cameras and a worldwide audience at a clinic in Switzerland, with the use of lethal injection administered by a physician.

The filming of his death will be broadcast on BattleCam.com, a 24/7 Reality TV website where live events are regularly cast to a wide range of audiences.
The site is run by billionaire businessman Alki David, who purchased the exclusive rights to broadcast the process.

ALKI DAVID E NIKOLAI IVANISOVICH

ALKI DAVID & NIKOLAI IVANISOVICH

"I am grateful to Mr. David and his team for making this possible," Ivanisovich told Russia Today. "My family will be able to live in prosperity after I pass. May God bless Mr. David for his kindness and generosity.

"Projecting the moral questions that will arise from this event, I would like to add that I find nothing wrong with this at all.

BATTLE CAM

“Death is a fact of life... many governments throughout the western world, including Switzerland, Belgium and Luxembourg, recognize the importance the right to each individual's right to end their life, free of terminal pain."

The controversial event comes at a time the world is in the midst of a debate on assisted suicides: In the United States, it is legal only in the states of Oregon, Montana and Washington.

"This is a breakthrough in consciousness on what we watch,” BattleCam Operations VP Claude Haraser said, “and how we watch it."

Source: radaronline.com

 

Concrete pavements are made by mixing cement with water, sand, and "virgin aggregates" obtained from rock quarries located in the proximity of the construction site. In Indiana most of these aggregates are quarried limestone.

"Some parts of Indiana have plenty of quarries near highway construction sites," said Nancy Whiting, a scientist with the Applied Concrete Research Initiative at Purdue's School of Civil Engineering. "In other places, it's more difficult to find quality aggregate. If you have to drive 50 or 100 miles to get a good quality aggregate, it's going to be much more cost effective to use recycled materials by crushing the concrete you have in place."

Concrete recycling may cut highway construction cost, landfill use

Whiting is leading the concrete recycling project funded by INDOT through the Joint Transportation Research Program with Jan Olek, a Purdue professor of civil engineering, postdoctoral research associate Jitendra Jain and graduate research assistant Kho Pin Verian.

"If you are going to pave, you may have to remove the old concrete and break it into pieces anyway, so recycling makes sense," Olek said. "And you avoid putting it in landfills."

Jain gave a research presentation about the work earlier this month during a meeting of the American Concrete Institute in Tampa, Fla.

The researchers are testing concrete mixtures that contain varying percentages of recycled concrete. They also are developing cost-analysis software that will enable the state and construction contractors to estimate how much they could save by using recycled concrete. Crushing old concrete pavements into aggregate that can be recycled in new concrete can potentially reduce materials costs by 10 percent to 20 percent, depending on whether any quarries are located near construction sites.

"Whether that would mean a comparable reduction in overall construction costs is part of what our research will determine," Whiting said.

Also involved in the work are Mark Snyder, an engineering consultant based in Pittsburgh, and Tommy Nantung, a project administrator at INDOT. Indiana currently allows the use of "recycled concrete as aggregate," or RCA, as a base layer to support new pavements. However, no existing specifications allow for use of this material in new concrete mixtures. The goal of the research project is to extend the use of the crushed concrete for manufacturing of mixtures that can be used to construct the pavement itself.

The team will finalize a report early next year, providing guidelines and recommendations to help create design and material standards. Standards are needed to control the quality of RCA and its proper use in creating the new concrete.

"Various other states have used crushed concrete as aggregate, but there has been no standardization, so the end result hasn't always been good," Whiting said. "We are trying to show INDOT that it can work and how to be consistent about getting a good product."

One aim is to ensure resistance of the RCA to cracking due to freezing and thawing cycles the pavements are exposed to during winter. Some aggregates are more susceptible to cracking than others. The focus of the standards will be on test methods for freeze-thaw durability and absorption of water and deicing chemicals.

The researchers are working with industry to produce nearly 400 test specimens of varying sizes and shapes containing different percentages of recycled aggregate. Concrete taken from State Route 26 when it was recently repaved in Lafayette has been crushed for use as RCA for the project.

"Slabs of concrete have been crushed into aggregate by Milestone Contractors LP under the direction of J. Beland," said Whiting.

A commercial concrete plant in Lafayette operated by Irving Materials Inc. is mixing the material. In addition, Jay Snider and Calvin Kingery of Irving Materials as well as Dick Newell of Milestone Contractors are working alongside the researchers, helping with issues ranging from adjusting mixture proportions to placement of trial slabs in the field.

Industry partners helped found the Applied Concrete Research Initiative in 2008 along with INDOT and academia, and are providing their services free of charge.

"They are doing this as a courtesy to us," Olek said. "This type of collaboration with practitioners is critical with respect to implementation of laboratory derived materials and technologies in the field."

More information: Predicting Long Term Durability of Concretes with Recycled Concrete as Coarse Aggregates

ABSTRACT:
 
The use of recycled concrete (RCA) as coarse aggregates in concrete is a sustainable, cost-effective alternative to disposing the old concrete pavements. Previous studies indicated that replacing up to 30% of the original (virgin) coarse aggregate in the mixture with RCA will have no negative effects on the freeze-thaw (F/T) resistance and mechanical properties of hardened concretes. In the present study, RCA was used in both plain and fly ash (20% of Class C fly ash) concretes to substitute for crushed limestone coarse virgin aggregates at four different replacement levels (0%, 30%, 50%, and 100%). The long-term durability of all concrete mixtures was evaluated by determining the F/T resistance (ASTM C666 procedure A), scaling resistance (ASTM C672), and rapid chloride penetration (RCP) resistance (ASTM C1202). In addition, the electrical impedance spectroscopy (EIS) measurements were performed on the same concrete specimens that were used for RCP test. EIS spectra were obtained using a Solartron™ 1260 gain-phase analyzer. A frequency range of 1 Hz–10 MHz using a 250 mV AC signal was employed, with 10 measurements per decade. The relationship between the values of final charge passed and bulk resistance obtained from EIS will be used to evaluate the effects of increase in temperature on charge passed during RCP for concretes with RCA. The different test results from this study would be useful to optimize the replacement levels as well as preferred tests to predict long-term durability of concretes with RCA.

Source: Physorg - Research Provided by Purdue University

 

Viewers, for instance, can use the system to focus in on the details of a booth within a panorama of a carnival midway, but also reverse time to see how the booth was constructed. Or they can watch a group of plants sprout, grow and flower, shifting perspective to watch some plants move wildly as they grow while others get eaten by caterpillars. Or, they can view a computer simulation of the early universe, watching as gravity works across 600 million light-years to condense matter into filaments and finally into stars that can be seen by zooming in for a close up.

"With GigaPan Time Machine, you can simultaneously explore space and time at extremely high resolutions," said Illah Nourbakhsh, associate professor of robotics and head of the CREATE Lab. "Science has always been about narrowing your point of view — selecting a particular experiment or observation that you think might provide insight. But this system enables what we call exhaustive science, capturing huge amounts of data that can then be explored in amazing ways."

The system is an extension of the GigaPan technology developed by the CREATE Lab and NASA, which can capture a mosaic of hundreds or thousands of digital pictures and stitch those frames into a panorama that be interactively explored via computer. To extend GigaPan into the time dimension, image mosaics are repeatedly captured at set intervals, and then stitched across both space and time to create a video in which each frame can be hundreds of millions, or even billions of pixels.

An enabling technology for time-lapse GigaPans is a feature of the HTML5 language that has been incorporated into such browsers as Google's Chrome and Apple's Safari. HTML5, the latest revision of the HyperText Markup Language (HTML) standard that is at the core of the Internet, makes browsers capable of presenting video content without use of plug-ins such as Adobe Flash or Quicktime.

Using HTML5, CREATE Lab computer scientists Randy Sargent, Chris Bartley and Paul Dille developed algorithms and software architecture that make it possible to shift seamlessly from one video portion to another as viewers zoom in and out of Time Machine imagery. To keep bandwidth manageable, the GigaPan site streams only those video fragments that pertain to the segment and/or time frame being viewed.

"We were crashing the browsers early on," Sargent recalled. "We're really pushing the browser technology to the limits."

Guidelines on how individuals can capture time-lapse images using GigaPan cameras are included on the site created for hosting the new imagery's large data files, http://timemachine.gigapan.org/wiki/Main_Page . Sargent explained the CREATE Lab is eager to work with people who want to capture Time Machine imagery with GigaPan, or use the visualization technology for other applications.

Once a Time Machine GigaPan has been created, viewers can annotate and save their explorations of it in the form of video "Time Warps."

Though the time-lapse mode is an extension of the original GigaPan concept, scientists already are applying the visualization techniques to other types of Big Data. Carnegie Mellon's Bruce and Astrid McWilliams Center for Cosmology, for instance, has used it to visualize a simulation of the early universe performed at the Pittsburgh Supercomputing Center by Tiziana Di Matteo, associate professor of physics.

"Simulations are a huge bunch of numbers, ugly numbers," Di Matteo said. "Visualizing even a portion of a simulation requires a huge amount of computing itself." Visualization of these large data sets is crucial to the science, however. "Discoveries often come from just looking at it," she explained.

Rupert Croft, associate professor of physics, said cosmological simulations are so massive that only a segment can be visualized at a time using usual techniques. Yet whatever is happening within that segment is being affected by forces elsewhere in the simulation that cannot be readily accessed. By converting the entire simulation into a time-lapse GigaPan, however, Croft and his Ph.D. student, Yu Feng, were able to create an image that provided both the big picture of what was happening in the early universe and the ability to look in detail at any region of interest.

Using a conventional GigaPan camera, Janet Steven, an assistant professor of biology at Sweet Briar College in Virginia, has created time-lapse imagery of rapid-growing brassicas, known as Wisconsin Fast Plants. "This is such an incredible tool for plant biology," she said. "It gives you the advantage of observing individual plants, groups of plants and parts of plants, all at once."

Steven, who has received GigaPan training through the Fine Outreach for Science program, said time-lapse photography has long been used in biology, but the GigaPan technology makes it possible to observe a number of plants in detail without having separate cameras for each plant. Even as one plant is studied in detail, it's possible to also see what neighboring plants are doing and how that might affect the subject plant, she added.

Steven said creating time-lapse GigaPans of entire landscapes could be a powerful tool for studying seasonal change in plants and ecosystems, an area of increasing interest for understanding climate change. Time-lapse GigaPan imagery of biological experiments also could be an educational tool, allowing students to make independent observations and develop their own hypotheses.

Source: PhysOrg - Provided by Carnegie Mellon University

 

The advance, featured this week in the early online edition of the journal Proceedings of the National Academy of Sciences, represents the first demonstration of lens-free optical tomographic imaging on a chip, a technique capable of producing high-resolution 3-D images of large volumes of microscopic objects.

Optical microscope without lenses produces high-resolution 3-D images on a chip

"This research clearly shows the potential of lens-free computational microscopy," said Aydogan Ozcan, senior author of the research and an associate professor of electrical engineering at UCLA's Henry Samueli School of Engineering and Applied Science. "Wonderful progress has been made in recent years to miniaturize life-sciences tools with microfluidic and lab-on-a-chip technologies, but until now optical microscopy has not kept pace with the miniaturization trend."

An optical imaging system small enough to fit onto an opto-electronic chip provides a variety of benefits. Because of the automation involved in on-chip systems, scientific work could be sped up significantly, which might have a great impact in the fields of cell and developmental biology. In addition, the small size not only has great potential for miniaturizing systems but also leads to cost savings on equipment.

The optical microscope, invented more than 400 years ago, has tended to grow larger and more complex as it has been modified to image ever-smaller objects with better resolution. To address this lack of progress in miniaturization, Ozcan's research group — with graduate student Serhan Isikman and postdoctoral scholar Waheb Bishara as lead researchers — developed the new tomographic microscopy platform through the next evolution of a lens-free imaging technology the group created and has been improving for years.

Ozcan, a researcher at the California NanoSystems Institute at UCLA, makes the analogy that a traditional optical microscope is like a huge set of pipes delivering content, in the form of images, to the user. Over years of development, bottlenecks occur that impede further improvement. Even if one part of the system — that is, one bottleneck — is improved, other bottlenecks keep that improvement from being fully realized. Not so with the lens-free system, according to Ozcan.


"Lens-free imaging removes the pipes altogether by utilizing an entirely new design," he said.

The system takes advantage of the fact that organic structures, such as cells, are partially transparent. So by shining a light on a sample of cells, the shadows created reveal not only the cells' outlines but details about their sub-cellular structures as well.

"These details can be captured and analyzed if the shadow is directed onto a digital sensor array," Isikman said. "The end result of this process is an image taken without using a lens."

Ozcan envisions this lens-free imaging system as one component in a lab-on-a-chip platform. It could potentially fit beneath a microfluidic chip, a tool for the precise control and manipulation of sub-millimeter biological samples and fluids, and the two tools would operate in tandem, with the microfluidic chip depositing and subsequently removing a sample from the lens-free imager in an automated, or high-throughput, process.

The platform's 3-D images are created by rotating the light source to illuminate the samples from multiple angles. These multiple angles also allow the system to utilize tomography, a powerful imaging technique. Through the use of tomography, the system is able to produce 3-D images without sacrificing resolution.

"The field of view of lens-based microscopes is limited because the lens focuses on a narrow area of a sample," Bishara said. "A lens-free microscope has both a much larger field of view and depth of field because the imaging is done by the digital sensor array and is not constrained by a lens."

Source: PhysOrg

 

The new work from the Rice lab of biochemist Kathleen Matthews, in collaboration with former Rice faculty fellow and current Texas A&M assistant professor Sarah Bondos, simplifies the process of making materials with fully functional proteins. Such materials could find extensive use as chemical catalysts and biosensors and in tissue engineering, for starters.

Strands of Ubx fiber patterned with fluorescent protein are the result of research by scientists at Rice University and Texas A&M. The strands can contain active proteins that may find use as chemical catalysts and biosensors and in tissue engineering. (Credit: Zhao Huang/Rice University)

Their paper in the online edition of Advanced Functional Materials details a method to combine proteins with a transcription factor derived from fruit flies and then draw it into fine, strong strands that can be woven into any configuration.

Bondos and Matthews led the team that included primary author Zhao Huang and research technician Taha Salim, both of Rice, and research assistants Autumn Brawley and Jan Patterson, both of Texas A&M.

The research had its genesis while Bondos was in Matthews' Rice lab studying Ultrabithorax (Ubx), a recombinant transcription factor protein found in Drosophila melanogaster (the common fruit fly). This protein regulates the development of wings and legs.

"It's biodegradable, nontoxic and made of naturally occurring proteins -- though we have no reason to believe that fruit flies ever produce enough of these proteins to actually make fibers," Bondos said.

It was a surprise, then, to find that Ubx self-assembles into a film under relatively mild conditions.

"I was cleaning up in the lab one morning and I noticed what appeared to be a drop of water suspended in midair beneath a piece of equipment I was using the previous night," Bondos recalled.

It turned out the droplet was water encased in a sac of Ubx film. The sac was hanging by a Ubx fiber so thin that it was more difficult to see than a strand of a spider's web, Bondos said.

"It clued us in that this was making materials," said Matthews, Rice's Stewart Memorial Professor of Biochemistry and Cell Biology and former dean of the Wiess School of Natural Sciences.

The chance discovery prompted a 2009 paper in the journal Biomacromolecules about the material they dubbed "ultrax," a superstrong and highly elastic natural fiber.

"We found that if you put a little drop of this protein solution on a slide, the Ubx forms a film. And if you touch a needle to that film, you can draw a fiber," Matthews said. "Then we asked, What if we could incorporate other functions into these materials? Can we make chimeras?" The answer was yes, though it took ingenuity to prove.

Chimeras in the biological world contain genetically distinct cells from two or more sources. In Greek mythology, chimeras are beings with parts from multiple animals; a pig with wings, for instance, would qualify. But real chimeras are usually more subtle. On the molecular level, chimeras are proteins that are fused into a single polypeptide and can be purified as a single molecular entity.

As a proof of principle, the team used gene-fusion techniques to create chimeras by combining Ubx with fluorescent and luminescent proteins to see if they remained functional. They did. The combined materials still formed a film on water. Drawn into fibers and put under a microscope, Ubx combined with enhanced green fluorescent protein (EGFP) kept its bright green color. Ubx-mCherry was bright red, the brown protein myoglobin (from sperm whales) was brown, and luciferase glowed.

Huang was able to make patterns with strands generated by the chimeras by twisting red and green fluorescent proteins into candy cane-like tubes, or lacing them on a frame. "This patterning technique is pretty unique and very simple," said Huang, who recently defended his thesis on the subject. He said making solid materials with functional proteins often requires harsh chemical or physical processing that damages the proteins' effectiveness. But creating complex three-dimensional structures with Ubx is efficient and requires no specialized equipment.

Bondos is studying how many proteins are amenable to fusion with Ubx. "It looks like it's a fairly wide range, and even though Ubx is positively charged, both positively and negatively charged proteins can be incorporated." She said even proteins that don't directly fuse with Ubx may be able to connect through intermediary binding partners.

Bondos said the 2009 paper "showed we could make three-dimensional scaffolds. We can basically make rods and sheets and meld them together; anything you can build with Legos, we can build with Ubx."

Ubx-based materials can match the natural properties of elastin, the protein that makes skin and other tissues pliable, Bondos said. "You don't want to make a heart out of something hard, and you don't want to make a bone out of something soft," she said. "We can tune the mechanical properties by changing the diameter of the fibers."

She said functionalized Ubx offers a path to growing three-dimensional organs layer by layer. "We should be able to build something shaped like a heart, and because we can pattern the chimeras within fibers and films, we can build instructions into the material that cause cells to differentiate as muscle, nerves, vasculature and other things."

Bondos suggested the material might also be useful for replacing damaged nerves. "We should be able to stimulate cell attachment and nerve growth along the middle and factors on the ends to enhance attachment to existing nerve cells, to tie it into the patient. It really is pretty exciting."

Matthews said the ability to characterize and pattern fibers for different functions should find many uses, because enzymes, antibodies, growth factors and peptide recognition sequences can now be incorporated into biomaterials. She said sequential arrays of functional fibers for step-by-step catalysis of materials is also possible.

"You're only limited by your mechanical imagination," she said.

The Robert A. Welch Foundation and Texas A&M Health Science Center Research Development and Enhancement Awards Program supported the research.

Journal Reference:

Zhao Huang, Taha Salim, Autumn Brawley, Jan Patterson, Kathleen S. Matthews, Sarah E. Bondos. Functionalization and Patterning of Protein-Based Materials Using Active Ultrabithorax Chimeras. Advanced Functional Materials, 2011; DOI: 10.1002/adfm.201100067

Source: Sciencedaily.com

 

In the arid Namib Desert on the west coast of Africa, one type of beetle has found a distinctive way of surviving. When the morning fog rolls in, the Stenocara gracilipes species, also known as the Namib Beetle, collects water droplets on its bumpy back, then lets the moisture roll down into its mouth, allowing it to drink in an area devoid of flowing water.

What nature has developed, Shreerang Chhatre wants to refine, to help the world's poor. Chhatre is an engineer and aspiring entrepreneur at MIT who works on fog harvesting, the deployment of devices that, like the beetle, attract water droplets and corral the runoff. This way, poor villagers could collect clean water near their homes, instead of spending hours carrying water from distant wells or streams. In pursuing the technical and financial sides of his project, Chhatre is simultaneously a doctoral candidate in chemical engineering at MIT; an MBA student at the MIT Sloan School of Management; and a fellow at MIT's Legatum Center for Development and Entrepreneurship.

Access to water is a pressing global issue: the World Health Organization and UNICEF estimate that nearly 900 million people worldwide live without safe drinking water. The burden of finding and transporting that water falls heavily on women and children. "As a middle-class person, I think it's terrible that the poor have to spend hours a day walking just to obtain a basic necessity," Chhatre says.

A fog-harvesting device consists of a fence-like mesh panel, which attracts droplets, connected to receptacles into which water drips. Chhatre has co-authored published papers on the materials used in these devices, and believes he has improved their efficacy. "The technical component of my research is done," Chhatre says. He is pursuing his work at MIT Sloan and the Legatum Center in order to develop a workable business plan for implementing fog-harvesting devices.

Interest in fog harvesting dates to the 1990s, and increased when new research on Stenocara gracilipes made a splash in 2001. A few technologists saw potential in the concept for people. One Canadian charitable organization, FogQuest, has tested projects in Chile and Guatemala.

Chhatre's training as a chemical engineer has focused on the wettability of materials, their tendency to either absorb or repel liquids (think of a duck's feathers, which repel water). A number of MIT faculty have made advances in this area, including Robert Cohen of the Department of Chemical Engineering; Gareth McKinley of the Department of Mechanical Engineering; and Michael Rubner of the Department of Materials Science and Engineering. Chhatre, who also received his master's degree in chemical engineering from MIT in 2009, is co-author, with Cohen and McKinley among other researchers, of three published papers on the kinds of fabrics and coatings that affect wettability.

One basic principle of a good fog-harvesting device is that it must have a combination of surfaces that attract and repel water. For instance, the shell of Stenocara gracilipes has bumps that attract water and troughs that repel it; this way, drops collects on the bumps, then run off through the troughs without being absorbed, so that the water reaches the beetle's mouth.

To build fog-harvesting devices that work on a human scale, Chhatre says, "The idea is to use the design principles we developed and extend them to this problem."

To build larger fog harvesters, researchers generally use mesh, rather than a solid surface like a beetle's shell, because a completely impermeable object creates wind currents that will drag water droplets away from it. In this sense, the beetle's physiology is an inspiration for human fog harvesting, not a template. "We tried to replicate what the beetle has, but found this kind of open permeable surface is better," Chhatre says. "The beetle only needs to drink a few micro-liters of water. We want to capture as large a quantity as possible."

In some field tests, fog harvesters have captured one liter of water (roughly a quart) per one square meter of mesh, per day. Chhatre and his colleagues are conducting laboratory tests to improve the water collection ability of existing meshes.

FogQuest workers say there is more to fog harvesting than technology, however. "You have to get the local community to participate from the beginning," says Melissa Rosato, who served as project manager for a FogQuest program that has installed 36 mesh nets in the mountaintop village of Tojquia, Guatemala, and supplies water for 150 people. "They're the ones who are going to be managing and maintaining the equipment." Because women usually collect water for households, Rosato adds, "If women are not involved, chances of a long-term sustainable project are slim."

Whatever Chhatre's success in the laboratory, he agrees it will not be easy to turn fog-harvesting technology into a viable enterprise. "My consumer has little monetary power," he notes. As part of his Legatum fellowship and Sloan studies, Chhatre is analyzing which groups might use his potential product. Chhatre believes the technology could also work on the rural west coast of India, north of Mumbai, where he grew up.

Another possibility is that environmentally aware communities, schools or businesses in developed countries might try fog harvesting to reduce the amount of energy needed to obtain water. "As the number of people and businesses in the world increases and rainfall stays the same, more people will be looking for alternatives," says Robert Schemenauer, the executive director of FogQuest.

Indeed, the importance of water-supply issues globally is one reason Chhatre was selected for his Legatum fellowship.

"We welcomed Shreerang as a Legatum fellow because it is an important problem to solve," notes Iqbal Z. Quadir, director of the Legatum Center. "About one-third of the planet's water that is not saline happens to be in the air. Collecting water from thin air solves several problems, including transportation. If people do not spend time fetching water, they can be productively employed in other things which gives rise to an ability to pay. Thus, if this technology is sufficiently advanced and a meaningful amount of water can be captured, it could be commercially viable some day."

Quadir also feels that if Chhatre manages to sell a sufficient number of collection devices in the developed world, it could contribute to a reduction in price, making it more viable in poor countries. "The aviation industry in its infancy struggled with balloons, but eventually became a viable global industry," Quadir adds. "Shreerang's project addresses multiple problems at the same time and, after all, the water that fills our rivers and lakes comes from air."

That said, fog harvesting remains in its infancy, technologically and commercially, as Chhatre readily recognizes. "This is still a very open problem," he says. "It's a work in progress."

Source: EurekAlert

 
Ci sono 3174 persone collegate

< ottobre 2020 >
L
M
M
G
V
S
D
   
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 
             

Titolo
en - Global Observatory (605)
en - Science and Society (594)
en - Video Alert (346)
it - Osservatorio Globale (503)
it - Scienze e Societa (555)
it - Video Alerta (132)
ro - Observator Global (399)
ro - Stiinta si Societate (467)
ro - TV Network (149)
z - Games Giochi Jocuri (68)

Catalogati per mese - Filed by month - Arhivate pe luni:

Gli interventi piů cliccati

Ultimi commenti - Last comments - Ultimele comentarii:
Hi, it's Nathan!Pretty much everyone is using voice search with their Siri/Google/Alexa to ask for services and products now, and next year, it'll be EVERYONE of your customers. Imagine what you are ...
15/01/2019 @ 17:58:25
By Nathan
Now Colorado is one love, I'm already packing suitcases;)
14/01/2018 @ 16:07:36
By Napasechnik
Nice read, I just passed this onto a friend who was doing some research on that. And he just bought me lunch since I found it for him smile So let me rephrase that Thank you for lunch! Whenever you ha...
21/11/2016 @ 09:41:39
By Anonimo


Titolo





30/10/2020 @ 15:11:03
script eseguito in 807 ms